Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Infect Genet Evol ; 112: 105463, 2023 08.
Article in English | MEDLINE | ID: covidwho-20244841

ABSTRACT

Recent reports on identification of canine coronavirus (CCoV) in humans have emphasized the urgency to strengthen surveillance of animal CoVs. The fact that recombinations between CCoV with feline, porcine CoVs brought about new types of CoVs indicated that more attention should be paid to domestic animals like dogs, cats and pigs, and the CoVs they carried. However, there are about ten kinds of CoVs that infect above animals, and thus representative CoVs with zoonotic potentials were considered in this study. Multiplex RT-PCR against CCoV, Feline coronavirus (FCoV), porcine deltacoronavirus and porcine acute diarrhea syndrome coronavirus was developed to investigate the prevalence of CoVs from domestic dogs in Chengdu, Southwest China. Samples from a total of 117 dogs were collected from a veterinary hospital, and only CCoV (34.2%, 40/117) was detected. Therefore, this study focused on CCoV and its characteristics of S, E, M, N and ORF3abc genes. Compared with CoVs that are capable of infecting humans, CCoV strains showed highest nucleotide identity with the novel canine-feline recombinant detected from humans (CCoV-Hupn-2018). Phylogenetic analysis based on S gene, CCoV strains were not only clustered with CCoV-II strains, but also closely related to FCoV-II strains ZJU1617 and SMU-CD59/2018. As for assembled ORF3abc, E, M, N sequences, CCoV strains had the closest relationship with CCoV-II (B203_GZ_2019, B135_JS_2018 and JS2103). What's more, specific amino acid variations were found, especially in S and N proteins, and some mutations were consistent with FCoV, TGEV strains. Altogether, this study provided a novel insight into the identification, diversification and evolution of CoVs from domestic dogs. It is of top priority to recognize zoonotic potential of CoVs, and continued comprehensive surveillance will help better understand the emergence, spreading, and ecology of animal CoVs.


Subject(s)
Coronavirus Infections , Coronavirus, Canine , Dog Diseases , Animals , Dogs , Cats , Humans , Swine , Coronavirus, Canine/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Reverse Transcriptase Polymerase Chain Reaction , Phylogeny , Molecular Epidemiology , Mutation , Animals, Domestic , China/epidemiology , Dog Diseases/epidemiology
2.
Comp Immunol Microbiol Infect Dis ; 94: 101956, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2242665

ABSTRACT

Canine coronavirus (CCoV) is associated with diarrhea in dogs, with a high incidence and sometimes even death. However, there is currently limited information about its prevalence and molecular characterization in northeastern China. Therefore, in this study, we examined 325 canine fecal specimens in four provinces in northeastern China from 2019 to 2021. PCR results revealed that 57 out of 325 (17.5%) samples were found to be positive for CCoV, and the positive rate varies obviously with city, season, age and so on. High incidence (65%) of viral co-infection was detected in the diarrhea samples and mixed infection of distinct CCoV genotypes occurs extensively. More importantly, sequence analysis showed that the S gene has a strong mutation. Phylogenetic analysis demonstrated that CCoV-I and CCoV-II strains has different origins. In particular, we found the CCoV-IIa strains of S gene sequenced and the reference strain B906_ZJ_2019 were highly clustered, and the reference strain was a recombinant strain of CCoV-I and CCoV-II. Our findings provide useful orienting clues for evaluating the pathogenic potential of CCoV in canines, and point out more details on characterization in northeastern China. Further work is required to determine the significance and continuous genetic evolution of CCoV.


Subject(s)
Coronavirus Infections , Coronavirus, Canine , Dog Diseases , Animals , Dogs , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Coronavirus, Canine/genetics , Prevalence , Phylogeny , Diarrhea/veterinary , China , Genetic Variation , Dog Diseases/epidemiology , Feces
3.
Arch Virol ; 168(2): 36, 2023 Jan 07.
Article in English | MEDLINE | ID: covidwho-2174218

ABSTRACT

Viral pathogens are the primary cause of canine gastroenteritis. However, few structured comprehensive studies on the viral etiology of canine gastroenteritis have been conducted. In this study, 475 rectal swabs collected over three years (2018-2021) from clinical canine gastroenteritis cases were screened for the presence of six major enteric viruses - canine parvovirus 2 (CPV-2), canine distemper virus (CDV), canine adenovirus 2 (CAdV-2), canine coronavirus (CCoV), canine astrovirus (CaAstV), and canine rotavirus (CRV) - by real-time PCR. The most frequently detected virus was CPV-2, which was present in 64.8% of the samples (subtype 2a, 21.1%; 2b, 77.4%; 2c, 1.5%), followed by CDV (8%), CaAstV (7.2%), CCoV (5.9%), and CAdV-2 (4.6%). Two to four of these viruses in different combinations were found in 16.8% of the samples, and CRV was not detected. The complete genome sequences of Indian isolates of CDV, CCoV, and CaAstV were determined for the first time, and phylogenetic analysis was performed. This study highlights the need for routine prophylactic vaccination with the appropriate vaccines. Notably, 70.3% of animals vaccinated with DHPPiL were found to be positive for at least one virus. Hence, regular molecular analysis of the prevalent viruses is crucial for addressing vaccination failures.


Subject(s)
Coronavirus, Canine , Distemper Virus, Canine , Distemper , Dog Diseases , Gastroenteritis , Mamastrovirus , Parvoviridae Infections , Parvovirus, Canine , Rotavirus , Animals , Dogs , Phylogeny , Dog Diseases/epidemiology , Gastroenteritis/veterinary , Real-Time Polymerase Chain Reaction , Rotavirus/genetics , Coronavirus, Canine/genetics , Mamastrovirus/genetics , Distemper Virus, Canine/genetics
4.
Viruses ; 14(11)2022 Nov 03.
Article in English | MEDLINE | ID: covidwho-2099860

ABSTRACT

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that interacts with substrates, including microbial metabolites. Recent advances reveal that AhR is involved in the host response to coronaviruses (CoVs) infection. Particularly, AhR antagonists decrease the expression of angiotensin-converting enzyme 2 (ACE2) via AhR up-regulation, resulting in suppression of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in mammalian cells. Herein, we report that AhR is expressed in canine fibrosarcoma (A72) cells, where it is considerably activated by infection with genotype II of canine coronavirus (CCoV-II). The pharmacological inhibition of AhR, by CH223191, suppressed cell death signs and increased cell viability. Furthermore, the AhR antagonist induced a meaningful decline in virus yield, accompanied by the inhibition of the expression of viral nuclear protein (NP). Fascinatingly, during CCoV infection, a novel co-expression of NP and AhR expression was found. Taken together, our preliminary findings show that infection with CCoV activates AhR, and pharmacologic AhR inhibition reduces CCoV replication, identifying AhR as a possible candidate target for CCoV antiviral therapy.


Subject(s)
COVID-19 , Coronavirus, Canine , Dogs , Animals , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , SARS-CoV-2 , Genotype , Mammals
5.
Vet Res Commun ; 46(4): 1363-1368, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2041311

ABSTRACT

Canine coronavirus (CCoV), canine parvovirus (CPV), and canine distemper virus (CDV) are highly contagious canine pathogens; dogs with these diseases are difficult to treat. In a previous study, we developed a recombinant adenovirus expressing canine interferon lambda 3 (Ad-caIFNλ3) in canine epithelial cells. In this study, we aimed to investigate the antiviral activity of Ad-caIFNλ3 against CCoV, CPV, and CDV in two canine cell lines, A72 and MDCK. Ad-caIFNλ3 transduction suppressed replication of these viruses without cytotoxicity. Our results suggest that Ad-caIFNλ3 may be a therapeutic candidate for canine viral diseases.


Subject(s)
Adenoviridae Infections , Coronavirus, Canine , Distemper Virus, Canine , Distemper , Dog Diseases , Parvoviridae Infections , Parvovirus, Canine , Dogs , Animals , Parvovirus, Canine/genetics , Distemper Virus, Canine/genetics , Coronavirus, Canine/genetics , Adenoviridae , Antiviral Agents , Parvoviridae Infections/veterinary , Antibodies, Viral , Adenoviridae Infections/veterinary
6.
Arch Virol ; 167(9): 1831-1840, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1899185

ABSTRACT

Viral enteritis is a significant threat to domestic dogs. The two primary pathogens that cause viral enteritis in dogs are canine coronavirus (CCoV) and canine parvovirus (CPV). In this study, we investigated the occurrence of CPV-2, CCoV, and canine circovirus coinfection by characterizing circulating subtypes of CPV-2 in faecal samples from symptomatic dogs admitted to veterinary clinics located in Ankara, Elazig, Kayseri, and Kocaeli provinces of Turkey, between 2019 and 2022. Virus detection by PCR and RT-PCR revealed that CPV-2 was present in 48 (77.4%) samples, and no other agents were detected. Based on the occurrence of the codon GAT at positions 1276 to 1278 (coding for aspartate at residue 426) of VP2, all CPV-2 isolates were confirmed to be of the CPV-2b subtype. The complete genome sequences of two CPV-2b isolates showed a high degree of similarity to and phylogenetic clustering with Australian and East Asian strains/isolates. The predominant CPV strain circulating in the three different regions of Turkey was found to be a CPV-2b strain containing the amino acid substitutions at Y324I and T440A, which commonly contribute to immune escape. This is the first report of complete genomic analysis of CPV-2 isolates circulating in symptomatic domestic dogs in Turkey. The evolution of CPV-2 has raised questions about the efficacy of current vaccination regimes and highlights the importance of monitoring the emergence and spread of new CPV-2 variants.


Subject(s)
Coronavirus, Canine , Dog Diseases , Enteritis , Parvoviridae Infections , Parvovirus, Canine , Animals , Australia , Dog Diseases/epidemiology , Dogs , Genomics , Parvoviridae Infections/epidemiology , Parvoviridae Infections/veterinary , Phylogeny , Turkey/epidemiology
7.
Viruses ; 14(5)2022 04 21.
Article in English | MEDLINE | ID: covidwho-1822442

ABSTRACT

A canine coronavirus (CCoV) has now been reported from two independent human samples from Malaysia (respiratory, collected in 2017-2018; CCoV-HuPn-2018) and Haiti (urine, collected in 2017); these two viruses were nearly genetically identical. In an effort to identify any novel adaptations associated with this apparent shift in tropism we carried out detailed evolutionary analyses of the spike gene of this virus in the context of related Alphacoronavirus 1 species. The spike 0-domain retains homology to CCoV2b (enteric infections) and Transmissible Gastroenteritis Virus (TGEV; enteric and respiratory). This domain is subject to relaxed selection pressure and an increased rate of molecular evolution. It contains unique amino acid substitutions, including within a region important for sialic acid binding and pathogenesis in TGEV. Overall, the spike gene is extensively recombinant, with a feline coronavirus type II strain serving a prominent role in the recombinant history of the virus. Molecular divergence time for a segment of the gene where temporal signal could be determined, was estimated at around 60 years ago. We hypothesize that the virus had an enteric origin, but that it may be losing that particular tropism, possibly because of mutations in the sialic acid binding region of the spike 0-domain.


Subject(s)
Coronavirus, Canine , Animals , Cats , Dogs , N-Acetylneuraminic Acid , Spike Glycoprotein, Coronavirus/genetics , Tropism , Zoonoses
8.
Microb Pathog ; 166: 105548, 2022 May.
Article in English | MEDLINE | ID: covidwho-1799780

ABSTRACT

Canine coronavirus (CCoV) is generally thought of as a mild, but highly contagious, enteritis of young dogs. This study was to investigate the molecular detection and characteristics of CCoV in Chengdu city, Southwest China. 218 canine fecal samples were collected from four animal hospitals and one animal shelter from 2020 to 2021. Fifty-nine CCoV-positive samples were detected by RT-PCR, including 40 CCoV-I, 25 CCoV-IIa, one CCoV-IIb and 10 untyped. To further analyze the genetic diversity of CCoV, we amplified ten complete spike (S) genes, including four CCoV-I and six CCoV-II strains. The amino acid sequence obtained in this study revealed 85.95% ± 12.55% homology with the reference strains. Moreover, in the N-terminal structural domain, there were two amino acid insertions (17QQ18) in two strains of CCoV-I and four amino acid insertions (95IGTN98) in CCoV-IIb strain. Interestingly, we identified that the S1/S2 cleavage site of the S protein of CCoV strains (SWU-SSX3 and SWU-SSX10) were consistent with feline coronavirus (FCoV). In the evolutionary tree, a strain of CCoV-I (SWU-SSX10) was found to be more closely related to FCoV, while SWU-SSX7 of CCoV-IIb was more closely related to coronavirus from the Chinese ferret badger. In addition, for the first time, recombination in a CCoV-IIb strain was found to occur between two subtypes occurring in the C domain of the S1 subunit, with a breakpoint starting at 2141 nt. The results enriched the epidemiological information of CCoV and provided an important reference for the prevention of CCoV in Chengdu city, Southwest China.


Subject(s)
Coronavirus, Canine , Dog Diseases , Amino Acids/genetics , Animals , Coronavirus, Canine/classification , Coronavirus, Canine/genetics , Dog Diseases/epidemiology , Dog Diseases/virology , Dogs , Phylogeny
9.
Biomed Res Int ; 2022: 9627961, 2022.
Article in English | MEDLINE | ID: covidwho-1789057

ABSTRACT

Purpose: To report the first complete fox coronavirus (CoV) genome sequence obtained through genome-wide amplifications and to understand the adaptive evolution of fox CoV. Methods: Anal swab samples were collected from 35 foxes to detect the presence of CoV and obtain the virus sequence. Phylogenetic analysis was conducted using MrBayes. The possibility of recombination within these sequences was assessed using GARD. Analysis of the levels of selection pressure experienced by these sequences was assessed using methods on both the PAML and Data Monkey platforms. Results: Of the 35 samples, two were positive, and complete genome sequences for the viruses were obtained. Phylogenetic analysis, using Bayesian methods, of these sequences, together with other CoV sequences, revealed that the fox CoV sequences clustered with canine coronavirus (CCoV) sequences, with sequences from other carnivores more distantly related. In contrast to the feline, ferret and mink CoV sequences that clustered into species-specific clades, the fox CoV fell within the CCoV clade. Minimal evidence for recombination was found among the sequences. A total of 7, 3, 14, and 2 positively selected sites were identified in the M, N, S, and 7B genes, respectively, with 99, 111, and 581 negatively selected sites identified in M, N, and S genes, respectively. Conclusion: The complete genome sequence of fox CoV has been obtained for the first time. The results suggest that the genome sequence of fox CoV may have experienced adaptive evolution in the genes replication, entry, and virulence. The number of sites in each gene that experienced negative selection is far greater than the number that underwent positive selection, suggesting that most of the sequence is highly conserved and important for viral survive. However, positive selection at a few sites likely aided these viruses to adapt to new environments.


Subject(s)
Coronavirus Infections , Coronavirus, Canine , Coronavirus , Animals , Bayes Theorem , Cats , Coronavirus/genetics , Coronavirus Infections/genetics , Coronavirus, Canine/genetics , Dogs , Ferrets/genetics , Genome, Viral/genetics , Phylogeny , Sequence Analysis, DNA
10.
Comp Immunol Microbiol Infect Dis ; 86: 101803, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1767978

ABSTRACT

In many countries, vaccination programs still require dogs to be vaccinated against rabies in addition to Canine distemper virus (CDV), adenovirus (CAV), parvovirus (CPV), parainfluenza virus (CPiV), Leptospira (L) or Canine coronavirus (CCV= Cv). Few vaccines containing all these antigens are commercially available and, unless compatibility between the vaccines was demonstrated, concurrent administration of a DAPPi-L(Cv) vaccine and a vaccine against rabies should not be recommended. This may be of concern for practitioners who wish to vaccinate dogs with all components on the same day. This study aimed at evaluating immunological compatibility between a monovalent rabies vaccine (Rabisin™) and two large combination vaccines against CDV, CAV, CPV, CPiV with 2 leptospira components +Cv (Recombitek® C6/Cv) or with 4 Leptospira components (Recombitek® C8), when injected concomitantly at two separate injection sites. Fourteen days after administration of the rabies vaccine, with or without concomitant administration of combo vaccines, all dogs had seroconverted against rabies and maintained protective titers over the duration of the study. In addition, 100% of the puppies vaccinated with one or the other combo vaccines seroconverted against CDV, CAV, CPV, CPiV (CCV) and Leptospira, whatever the vaccination group. Lack of immunological interference between Rabisin™ and all components of the Recombitek® C6/Cv or Recombitek® C8 Combo vaccines was demonstrated by non-inferiority analysis, except for CDV in the Recombitek®C8+ Rabisin™ group. Based on these results, a concomitant administration of Rabisin™ with Recombitek® C6/Cv or Recombitek® C8 can be recommended in daily practice, which can be essential for facilitating vaccination compliance.


Subject(s)
Coronavirus, Canine , Distemper Virus, Canine , Distemper , Dog Diseases , Leptospira , Leptospirosis , Parvovirus, Canine , Rabies Vaccines , Rabies , Viral Vaccines , Animals , Antibodies, Viral , Distemper/prevention & control , Dogs , Leptospirosis/veterinary , Rabies/prevention & control , Rabies/veterinary , Vaccines, Combined
11.
Schweiz Arch Tierheilkd ; 164(10): 661-671, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1603045

ABSTRACT

INTRODUCTION: Three outbreaks of fatal diarrhoea occurred in bush dog (Speothos venaticus) groups at two zoological collections in the United Kingdom between 2009 and 2017. In all cases, the predominant clinical signs were diarrhoea, anorexia and severe loss of condition. Despite supportive treatment, a number of fatalities occurred during each outbreak. Common gross post mortem findings were emaciation, with erythema, mucosal haemorrhage, and ulceration of the gastrointestinal tract. Histopathological features included villus blunting and fusion, crypt epithelial loss and lymphoid depletion, supporting a viral aetiology and canine coronavirus was suspected. Diagnosis was confirmed on the basis of serology (rising antibody titres) and the detection of viral nucleic acid using polymerase chain reaction. The canine coronavirus was subtyped as type 2a, which is known to cause systemic fatal disease in immature domestic dogs. To the authors' knowledge, these are the first reported cases of fatal diarrhoea associated with canine coronavirus type 2a in bush dogs. These outbreaks suggest that adult bush dogs are highly susceptible to canine coronavirus infection and may succumb to viral enteritis.


INTRODUCTION: Trois foyers de diarrhée mortelle sont survenus dans des groupes de chiens de brousse (Speothos venaticus) dans deux parcs zoologiques au Royaume-Uni entre 2009 et 2017. Dans tous les cas, les signes cliniques prédominants étaient la diarrhée, l'anorexie et une grave perte de condition. Malgré un traitement de soutien, un certain nombre de décès sont survenus au cours de chaque épidémie. Les résultats macroscopiques courants post-mortem étaient l'émaciation, un érythème, des hémorragies des muqueuses et des ulcération du tractus gastro-intestinal. Les caractéristiques histopathologiques comprenaient un émoussement et une fusion des villosités, une perte épithéliale des cryptes et une déplétion lymphoïde, ce qui confortait une étiologie virale. Un coronavirus canin a été suspecté. Le diagnostic a été confirmé sur la base de la sérologie (augmentation des titres d'anticorps) et de la détection d'acide nucléique viral par amplification en chaîne par polymérase. Le coronavirus canin a été sous-typé comme type 2a, qui est connu pour provoquer une maladie systémique mortelle chez les chiens domestiques immatures. À la connaissance des auteurs, il s'agit des premiers cas signalés de diarrhée mortelle associée au coronavirus canin de type 2a chez les chiens des buissons. Ces épidémies suggèrent que les chiens des buissons adultes sont très sensibles à l'infection par le coronavirus canin et peuvent succomber à une entérite virale.


Subject(s)
Canidae , Coronavirus, Canine , Dog Diseases , Animals , Diarrhea/epidemiology , Diarrhea/veterinary , Disease Outbreaks/veterinary , Dog Diseases/epidemiology , Dogs , United Kingdom
12.
Viruses ; 14(1)2021 12 30.
Article in English | MEDLINE | ID: covidwho-1576960

ABSTRACT

Canine coronavirus (CCoV) is widespread among the dog population and causes gastrointestinal disorders, and even fatal cases. As the zoonotic transmission of viruses from animals to humans has become a worldwide concern nowadays, it is necessary to screen free-roaming dogs for their common pathogens due to their frequent interaction with humans. We conducted a cross-sectional study to detect and characterize the known and novel Corona, Filo, Flavi, and Paramyxoviruses in free-roaming dogs in Bangladesh. Between 2009-10 and 2016-17, we collected swab samples from 69 dogs from four districts of Bangladesh, tested using RT-PCR and sequenced. None of the samples were positive for Filo, Flavi, and Paramyxoviruses. Only three samples (4.3%; 95% CI: 0.9-12.2) tested positive for Canine Coronavirus (CCoV). The CCoV strains identified were branched with strains of genotype CCoV-II with distinct distances. They are closely related to CCoVs from the UK, China, and other CoVs isolated from different species, which suggests genetic recombination and interspecies transmission of CCoVs. These findings indicate that CCoV is circulating in dogs of Bangladesh. Hence, we recommend future studies on epidemiology and genetic characterization with full-genome sequencing of emerging coronaviruses in companion animals in Bangladesh.


Subject(s)
Coronavirus Infections/veterinary , Coronavirus, Canine/genetics , Coronavirus, Canine/isolation & purification , Dog Diseases/epidemiology , Animals , Bangladesh/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Coronavirus, Canine/classification , Cross-Sectional Studies , Dog Diseases/virology , Dogs , Female , Genotype , Male , Phylogeny , Viral Proteins/genetics
13.
Res Vet Sci ; 144: 190-195, 2022 May.
Article in English | MEDLINE | ID: covidwho-1521511

ABSTRACT

Severe clinical diseases associated to αCoronavirus (αCoV) infections were recently demonstrated for the first time in humans and a closely related but distinct canine CoV (CCoV) variant was identified in the nasopharyngeal swabs of children with pneumonia hospitalized in Malaysia, in 2017-2018. The complete genome sequence analysis demonstrated that the isolated strain, CCoV-HuPn-2018, was a novel canine-feline-like recombinant virus with a unique nucleoprotein. The occurrence of three human epidemics/pandemic caused by CoVs in the recent years and the detection of CCoV-HuPn-2018, raises questions about the ability of these viruses to overcome species barriers from their reservoirs jumping to humans. Interestingly, in this perspective, it is interesting to consider the report concerning new CCoV strains with a potential dual recombinant origin through partial S-gene exchange with porcine transmissible gastroenteritis virus (TGEV) identified in pups died with acute gastroenteritis in 2009. The significance of the ability of CCoVs to evolve is still unclear, but several questions arisen on the biology of these viruses, focusing important epidemiological outcomes in the field, in terms of both virus evolution and prophylaxis. The new CCoV-Hupn-2018 should lead researchers to pay more attention to the mechanisms of recombination among CoVs, rather than to the onset of variants as a result of mutations, suggesting a continuous monitoring of these viruses and in particular of SARS-CoV-2.


Subject(s)
COVID-19 , Cat Diseases , Coronavirus, Canine , Dog Diseases , Animals , Biology , COVID-19/veterinary , Cats , Coronavirus, Canine/genetics , Dog Diseases/epidemiology , Dogs , Humans , Phylogeny , SARS-CoV-2
15.
ScientificWorldJournal ; 2021: 9342748, 2021.
Article in English | MEDLINE | ID: covidwho-1495720

ABSTRACT

BACKGROUND: Recently, an outbreak of a novel human coronavirus SARS-CoV-2 has become a world health concern leading to severe respiratory tract infections in humans. Virus transmission occurs through person-to-person contact, respiratory droplets, and contaminated hands or surfaces. Accordingly, we aim at reviewing the literature on all information available about the persistence of coronaviruses, including human and animal coronaviruses, on inanimate surfaces and inactivation strategies with biocides employed for chemical and physical disinfection. METHOD: A comprehensive search was systematically conducted in main databases from 1998 to 2020 to identify various viral disinfectants associated with HCoV and methods for control and prevention of this newly emerged virus. RESULTS: The analysis of 62 studies shows that human coronaviruses such as severe acute respiratory syndrome (SARS) coronavirus, Middle East respiratory syndrome (MERS) coronavirus or endemic human coronaviruses (HCoV), canine coronavirus (CCV), transmissible gastroenteritis virus (TGEV), and mouse hepatitis virus (MHV) can be efficiently inactivated by physical and chemical disinfectants at different concentrations (70, 80, 85, and 95%) of 2-propanol (70 and 80%) in less than or equal to 60 s and 0.5% hydrogen peroxide or 0.1% sodium hypochlorite within 1 minute. Additionally, glutaraldehyde (0.5-2%), formaldehyde (0.7-1%), and povidone-iodine (0.1-0.75%) could readily inactivate coronaviruses. Moreover, dry heat at 56°C, ultraviolet light dose of 0.2 to 140 J/cm2, and gamma irradiation could effectively inactivate coronavirus. The WHO recommends the use of 0.1% sodium hypochlorite solution or an ethanol-based disinfectant with an ethanol concentration between 62% and 71%. CONCLUSION: The results of the present study can help researchers, policymakers, health decision makers, and people perceive and take the correct measures to control and prevent further transmission of COVID-19. Prevention and decontamination will be the main ways to stop the ongoing outbreak of COVID-19.


Subject(s)
COVID-19/prevention & control , Disinfectants/pharmacology , Disinfection/instrumentation , SARS-CoV-2 , Virus Inactivation/drug effects , 2-Propanol/pharmacology , Animals , COVID-19/virology , Coronavirus, Canine/drug effects , Disinfection/methods , Ethanol/pharmacology , Formaldehyde/pharmacology , Gamma Rays , Glutaral/pharmacology , Hot Temperature , Humans , Hydrogen Peroxide/pharmacology , Mice , Middle East Respiratory Syndrome Coronavirus/drug effects , Murine hepatitis virus/drug effects , Povidone-Iodine/pharmacology , Severe acute respiratory syndrome-related coronavirus/drug effects , Sodium Hypochlorite/pharmacology , Transmissible gastroenteritis virus/drug effects , Ultraviolet Rays
16.
Clin Infect Dis ; 75(1): e1184-e1187, 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-1493772

ABSTRACT

We isolated a novel coronavirus from a medical team member presenting with fever and malaise after travel to Haiti. The virus showed 99.4% similarity with a recombinant canine coronavirus recently identified in a pneumonia patient in Malaysia, suggesting that infection with this virus and/or recombinant variants occurs in multiple locations.


Subject(s)
COVID-19 , Coronavirus, Canine , Animals , Dogs , Haiti , Humans , SARS-CoV-2/genetics , Travel
18.
Clin Infect Dis ; 74(3): 446-454, 2022 02 11.
Article in English | MEDLINE | ID: covidwho-1251708

ABSTRACT

BACKGROUND: During the validation of a highly sensitive panspecies coronavirus (CoV) seminested reverse-transcription polymerase chain reaction (RT-PCR) assay, we found canine CoV (CCoV) RNA in nasopharyngeal swab samples from 8 of 301 patients (2.5%) hospitalized with pneumonia during 2017-2018 in Sarawak, Malaysia. Most patients were children living in rural areas with frequent exposure to domesticated animals and wildlife. METHODS: Specimens were further studied with universal and species-specific CoV and CCoV 1-step RT-PCR assays, and viral isolation was performed in A72 canine cells. Complete genome sequencing was conducted using the Sanger method. RESULTS: Two of 8 specimens contained sufficient amounts of CCoVs as confirmed by less-sensitive single-step RT-PCR assays, and 1 specimen demonstrated cytopathic effects in A72 cells. Complete genome sequencing of the virus causing cytopathic effects identified it as a novel canine-feline recombinant alphacoronavirus (genotype II) that we named CCoV-human pneumonia (HuPn)-2018. Most of the CCoV-HuPn-2018 genome is more closely related to a CCoV TN-449, while its S gene shared significantly higher sequence identity with CCoV-UCD-1 (S1 domain) and a feline CoV WSU 79-1683 (S2 domain). CCoV-HuPn-2018 is unique for a 36-nucleotide (12-amino acid) deletion in the N protein and the presence of full-length and truncated 7b nonstructural protein, which may have clinical relevance. CONCLUSIONS: This is the first report of a novel canine-feline recombinant alphacoronavirus isolated from a human patient with pneumonia. If confirmed as a pathogen, it may represent the eighth unique coronavirus known to cause disease in humans. Our findings underscore the public health threat of animal CoVs and a need to conduct better surveillance for them.


Subject(s)
Coronavirus Infections , Coronavirus, Canine , Dog Diseases , Pneumonia , Animals , Cats , Coronavirus Infections/veterinary , Coronavirus, Canine/genetics , Dogs , Humans , Malaysia , Phylogeny
19.
Comp Immunol Microbiol Infect Dis ; 76: 101654, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1200821

ABSTRACT

Feline- and canine-derived coronaviruses (FCoVs and CCoVs) are widespread among dog and cat populations. This study was to understand the route of disease origin and viral transmission in veterinary animals and in human through comparative pan-genomic analysis of coronavirus sequences, especially retrieved from genomes of FCoV and CCoV. Average nucleotide identity based on complete genomes might clustered CoV strains according to their infected host, with an exception of type II of CCoV (accession number KC175339) that was clustered closely to virulent FCoVs. In contrast, the hierarchical clustering based on gene repertories retrieved from pan-genome analysis might divided the examined coronaviruses into host-independent clusters, and formed obviously the cluster of Alphacoronaviruses into sub-clusters of feline-canine, only feline, feline-canine-human coronavirus. Also, functional analysis of genomic subsets might help to divide FCoV and CCoV pan-genomes into (i) clusters of core genes encoding spike, membrane, nucleocapsid proteins, and ORF1ab polyprotein; (ii) clusters of core-like genes encoding nonstructural proteins; (iii) clusters of accessory genes encoding the ORF1A; and (iv) two singleton genes encoding nonstructural protein and polyprotein 1ab. Seven clusters of gene repertories were categorized as common to the FCoV and/or CCoV genomes including pantropic and high virulent strains, illustrating that distinct core-like genes/accessory genes concerning to their pathogenicity should be exploited in further biotype analysis of new isolate. In conclusion, the phylogenomic analyses have allowed the identification of trends in the viral genomic data, especially in developing a specific control measures against coronavirus disease, such as the selection of good markers for differentiating new species from common and/or pantropic isolates.


Subject(s)
Cat Diseases , Coronavirus, Canine , Coronavirus, Feline , Dog Diseases , Animals , Cats , Coronavirus, Canine/genetics , Coronavirus, Feline/genetics , Dogs , Genome, Viral , Phylogeny
20.
Arch Virol ; 166(7): 1877-1883, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1200805

ABSTRACT

Here, we report the development of an indirect enzyme-linked immunosorbent assay (ELISA) method that involves using multiepitope recombinant S protein (rSP) as the coating antigen to detect antibodies against canine coronavirus (CCoV). rSP was designed by arranging its four S fragments (91-135 aa, S1 gene; 377-434 aa, S2 gene; 647-671 aa, S3 gene; 951-971 aa, S4 gene; 207-227 aa) and two T-cell epitopes in tandem: T-E1-E2-E3-E4-T. This multiepitope antigen, which has a molecular weight of approximately 25 kDa and contains a His-tag, was recognized by a CCoV-positive serum in a Western blot assay. The optimal concentration of rSP as a coating antigen in the ELISA was 2 µg/mL, and the optimal dilution of enzyme-labeled secondary antibody was 1:10,000. The cutoff OD450 value was established at 0.2395. No reactivity was observed with antisera against canine distemper virus, canine parvovirus, or feline calicivirus, indicating that this assay is highly specific. We also tested 64 clinical serum samples using our newly established method, and the positive rate was found to be 82.8%. In conclusion, our assay was found to be highly sensitive and specific for the detection of antibodies against CCoV, and it can therefore serve as a new, efficient diagnostic method.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Serological Testing/methods , Coronavirus, Canine/immunology , Enzyme-Linked Immunosorbent Assay/methods , Spike Glycoprotein, Coronavirus/immunology , Animals , Distemper Virus, Canine/immunology , Dogs , Recombinant Proteins/immunology , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL